UC BERKELEY FACULTY SALARY EQUITY STUDY, ANNUAL UPDATE, 2016

OFFICE OF THE VICE PROVOST FOR THE FACULTY
APRIL 2016
Table of Contents

1. Executive summary .......................................................................................................................... 1

2. Detailed Findings ............................................................................................................................ 3
   A. Data and basic methodology
   B. Campus level—baseline variables (demography and experience)
   C. Campus level—variables for field and rank
   D. Campus-level—the three regression models
   E. Time-series regression analysis
   F. Unit-level regression analyses
   G. Sub-studies of special topics—rank and retention

3. Recommendations .......................................................................................................................... 37
   A. Additional studies and data-collection
   B. Salary enhancement programs
   C. Additional programs
1. Summary of Latest Data Findings and Activities

The initial Report on the Faculty Salary Equity Study was developed by a joint Senate-Administration steering committee and was published on the Vice Provost's website in late January 2015. The current report provides updates using data pulled from faculty personnel records on February 25, 2016.

Like the initial 2015 study, this report draws on a rich campus dataset that allows investigation of information concerning salary, gender, and ethnicity, while controlling for other important factors, including career experience, field, and rank. The main analysis focuses on two key submodels: one that includes controls for experience, field, and rank, and a second that includes controls for experience and field but excludes rank. (Both of these submodels are presented because there is some debate about which is preferable.)

New campus-level results. At the campus level, these two submodels continue to suggest that women and members of ethnic minority groups earn somewhat lower salaries on average than male non-minority faculty members, but they show negative differences that are smaller than those of last year:

| Campus Level Salary Differences for Women, Asian, and URM Relative to White Men, Log Model |
|-----------------------------------------------|-----------------------------------------------|
| Submodel 3 (no rank) | Submodel 4 (with rank) |
| Women | -4.3% | -3.4% | -1.8% | -1.2% |
| Asian | -1.7% | -1.7% | -1.8% | -1.7% |
| URM | -1.2% | -0.8% | -1.0% | -0.4% |

Additional comparisons between 2016 and 2015 are available below toward the end of subsection 2C and in subsection 2E.

2015 TDI program. While the nature of this salary study does not permit us to draw definite conclusions about what has caused the negative differences for women and URM faculty to shrink, one possibility is that the 2015 Targeted Decoupling Initiative (TDI) program is at least partly responsible.

Several aspects of the TDI program design drew upon findings of the 2015 salary study, and the program guidelines benefited from invaluable suggests provided by deans, chairs, and many faculty, as well as the Academic Senate committees on Diversity, Equity, and Campus Climate and on Budget and Interdepartmental Relations. A total of nearly $3M was provided for TDI
awards, and 387 faculty received salary increases of $4,000, $8,000, $12,000, or $16,000. Faculty who were women or members of minority groups (Asian and under-represented minorities) received 54% of the total funds; women and minority faculty currently comprise 46% of the total faculty population.

**Updated data and analysis.** Section 2 of this 2016 update includes updated results at the levels of schools, divisions, and colleges. Some of these units show larger negative differences for women and ethnic minority-group members than those for the campus as a whole; some show smaller negative differences; and some show positive differences. Appendix C for 2016 provides regression tables for the study’s findings.

**Updates on earlier recommendations.** Section 3 of this update includes information about how the campus is following up on the recommendations provided in section 5 of the 2015 Report.

**Additional information.** The 2015 Report provided information about salary policies at Berkeley and the evolving ideals of salary equity; those discussions are not repeated here but can be found in section 2 of last year’s study. Section 4 of the 2015 report provided information about understanding the possible causes of salary differences; again, those discussions are not repeated here.

This updated study should not be put on the shelf. It should continue a new era of thoughtful engagement with issues of faculty salary equity at Berkeley, and it should serve as a basis for fostering sustained and collective discussion and action.
2. Detailed Findings, 2016 Annual Update

This section of the report presents updates of relevant data and analyses, presenting them in the same order as they appeared in section 3 of the 2015 Report. (Section 2 of the 2015 Report described salary policies and practices and changing ideals of equity. It is not repeated here but is available in the 2015 Report.)

A basic presentation of data and methodology in subsection 2A is followed by four subsections discussing data and findings for the campus as a whole. Subsection 2B looks at baseline variables; subsection 2C describes the results of including variables for field and rank; subsection 2D compares the results of three different statistical models employed; subsection 2E explores time-series results; subsection 2F looks at unit-level results; and subsection 2G presents the results of sub-studies concerning rank and retention.

Fuller information is available in several appendices. Appendix A from the 2015 Report describes the study’s methodology in greater technical detail, and Appendix B from 2015 provides a detailed description of the variables used in the regression analyses. Please note that a few details presented in Appendices A and B were particular to the 2015 study. The regression tables underlying the figures presented below are provided in a 2016 Appendix C.

2A: Data and basic methodology

UC Berkeley is fortunate in having complete salary data\(^1\) for ladder faculty as well as complete historical data going back to 1979. The present study does not include summer salary, administrative stipends, administrative salary, or other types of supplemental compensation. This report update includes all professorial-series faculty (n=1524), with salary data as of February 25, 2016. In the interests of conducting a fully transparent study, no “outlier” salaries were omitted.\(^2\) Some degree data were missing from campus records, but these have all been filled in. Some limited but useful data on faculty members’ outside job offers and retentions are tied to these base data. For more information about the data for the study, please see the Appendix B.

Like the initial 2015 study, this 2016 update uses regression analysis so that it can simultaneously examine the impact of multiple factors on faculty salaries. It employs three different broad classes of regression models: (1) models fit to the logarithms of annual salaries of all faculty members (“log salary models”); (2) models fit to the levels of annual salaries of all

---

1 The data are drawn from the central-campus Human Capital Management system (HCM). The salary data are annualized at a 1.0 full time equivalency (FTE) rate to make them consistent across the campus, across different salary scales, and among full- and part-time faculty.

2 In the AAUP-sponsored report by Lois Haignere, “Paychecks: A Guide to Conducting Salary-Equity Studies for Higher Education Faculty,” several methods for dropping outliers are discussed (pp. 95-96), along with the circumstances in which it could be useful to investigate the effects of dropping them.
faculty members ("total population models"); and (3) models fit to the levels of salaries of white male faculty members only and then extrapolated to minority and female faculty ("white-male models"). In many of the figures below, results from log salary models are displayed; please note that in 2015 study, the log model seemed to estimate slightly larger negative salary differences for women and minorities than did the other two models.

Within each of the three broad classes of models, a series of submodels was produced by successively introducing controls for demographic factors (gender and ethnicity), professional experience, field, and rank. Time-series analyses enable the study to examine change over time, and both campus-level and unit-level studies allow for additional insight. Case studies explore the relationship of rank and outside job offers with current salary.

The models used in the main body of this report include indicators for women faculty and for two main groups of minority faculty members: Asians and URMs, a group that includes African Americans, Hispanics (of any race), and Native Americans. The structure of these models implies that the salary differential for minority female faculty relative to white men would be the sum of the gender and ethnicity differentials.

2B: Campus level—baseline variables (demography and experience)

The focus of this study is on the variation in faculty salaries by gender and ethnicity. These basic demographic categories are, however, correlated with other factors that can be expected to affect salary. Among these are measures of training and career experience: years since hire, years since highest degree, and degree type. For example, Figure 1A displays how men and women faculty at UCB are distributed by years since hire; figure 1B does the same for ethnicity.

These figures illustrate the fact that male faculty members at Berkeley have substantially higher average years of service than female faculty, and that white faculty have substantially higher average years of service than Asian and URM (under-represented minority) faculty. This reflects the fact that over time, Berkeley has increased the proportions of women, Asian, and URM faculty among those it hires.

---

3 These three types of models are recommended by Haignere.
4 A small number of faculty (38 males and 10 females) have an unknown ethnicity.
5 Campus records concerning gender are complete. Ethnicity information is provided voluntarily by faculty members, and all but 48 faculty members have provided this information. Individuals with unknown ethnicity are treated as a separate group unless there are fewer than 10; in that case, they are grouped with white faculty in the particular regression model. Where possible, analysis is provided separately for Asian and under-represented minority (URM) faculty.
Figure 1A: faculty headcount, by years of service* and gender

**Years of service at Berkeley at end of academic year, calculated based on first year of faculty appointment.**

Source: UC Berkeley Faculty Personnel Records, 2/25/2016.

Figure 1B: faculty headcount, by years of service* and ethnicity

**Years of service at Berkeley at end of academic year, calculated based on first year of faculty appointment.**

Source: UC Berkeley Faculty Personnel Records, 2/25/2016.
Figure 1C: Faculty headcount, by years since highest degree and gender

Source: UC Berkeley Faculty Personnel Records, 2/25/2016.

Figure 1D: Faculty headcount, by years since highest degree and ethnicity

URM includes African Americans, Hispanic, and Native Americans.

Source: UC Berkeley Faculty Personnel Records, 2/25/2016.
Figures 1C and 1D look at years since highest degree; again we see that the proportional representation of women and ethnic minority faculty is higher in the more junior cohorts.

Because academic salaries are on average higher for those with more professional experience (years of service and years since highest degree), it is not surprising to find that regression analyses taking experience into account reduce the salary differences that are found when considering demography alone. Figure 2 shows this reduction in the case of women:

![Figure 2: women vs. white men log salary submodels 1, 2](image)

-14.6% \[1\]

-10.8% \[2\]

Figure 2 shows the impact of experience on observed salary differences by gender using the log salary model. Submodel 1 includes demography only; Submodel 2 includes demography and experience. When demography alone is considered, women relative to white men have a negative salary difference of -14.6%. Once experience is taken into account, the negative difference is reduced to -10.8%. The reduction is unsurprising in light of two facts: faculty members with more experience can generally be expected to earn more than those with less experience, and current campus subpopulations reflect earlier years in which the proportion of women being hired was smaller than it is now. (For minority faculty, see Figures 4B and 4C below.)

While these submodels serve as a baseline for this study, they do not by themselves provide an adequate analysis of salaries by gender and ethnicity. The reason is that they do not take into account additional variables that can generally be expected to be associated with salary levels. We turn to those variables now.
Demographic patterns vary considerably by field. As Figure 3A shows, although women comprise 31% of the total Berkeley faculty, they comprise just over 10% of faculty in some departments and over 60% in others.

This pattern reflects well-documented national trends, with women and URM (under-represented minority) faculty more highly concentrated in humanities and some social science fields and substantially under-represented in many STEM fields (sciences, technology, engineering, and mathematics).

The reason this is relevant to a study of salaries is that average faculty salaries nation-wide also vary considerably by field, with fields in the humanities and several other areas generally less well compensated. Figure 3B presents this spread by displaying mean full-professor salaries by field at peer-private universities.⁶

---

⁶ The data are drawn from AAUDE.
Clearly field is a significant factor in faculty salaries, and so controls for field are important to include in this study. (Appendix B describes these controls in greater detail.)

Rank and time in rank can also be expected to be associated with salary. Gender and ethnicity patterns vary substantially by faculty rank and step, as Figures 3C and 3D show.
Figure 3C: faculty headcount, by rank/step and gender

![Faculty Headcount Chart](chart_c.png)

Source: UC Berkeley Faculty Personnel Records, 2/25/2016.

Figure 3D: faculty headcount, by rank/step and ethnicity

![Faculty Headcount Chart](chart_d.png)

Source: UC Berkeley Faculty Personnel Records, 2/25/2016.

URM includes African Americans, Hispanic, and Native Americans.

Source: UC Berkeley Faculty Personnel Records, 2/25/2016.
While to some extent these distributions reflect experience factors, they would not be expected to map neatly onto distributions based on experience alone. Of particular note is the concentration of large numbers of faculty members in certain “threshold” steps, especially Associate Professor, Step 5, and Professor, Steps 5 and 9.

Figure 4A shows the effects of variables for field and rank\(^7\) on salary differences by gender.

![Figure 4A: campus level, women vs. white men log salary submodels 1, 2, 3, 4](image)

With the introduction of field, the observed gender salary difference, relative to white men, is reduced from -10.8% to -3.4%. Once rank variables\(^8\) are entered into the regressions, the difference is further reduced, to -1.2%.

Given the systematic variation in salaries by experience and field, it seems advisable to consider both of these variables in any analysis of salary equity issues. It is also valuable to consider the results both of including and excluding rank variables, given that there is some debate about whether they ought to be included or not. (See subsection 4A of the 2015 Report.) Focusing, then, on submodels 3 and 4, the conclusion is that at the campus level, there is a negative salary difference between women and white male faculty as of February 25, 2016 of

---

\(^7\) For a detailed discussion of the construction of all regression variables, see Appendices A and B.

\(^8\) Rank variables are for (a) assistant and associate versus full professor and (b) years at current rank (as recommended by Haignere, p. 22).
As Figure 4B shows, salary differences for Asian faculty relative to white male faculty are also negative. Submodels 3 and 4 both display negative salary differentials between Asian and white male faculty of -1.7%. Similarly, Figure 4C displays negative differentials of -0.8% and -0.4% for URM faculty relative to white male faculty.

9 For full regression output, see Appendix C, Table A1, which includes levels of statistical significance.
10 See note 5 for information about ethnicity data.
Although these differences for URM faculty and Asian faculty are not statistically significant, they are important to note. In general, statistical significance is less likely to be established for smaller groups, yet despite their size, the groups of URM faculty and Asian faculty are central to the questions this study is examining. In addition, the data provide a complete census of all salaries and not a sample, so measures of statistical significance may be somewhat less relevant than they would otherwise be.

To understand these differences, it may be helpful to express them relative to the rate of annual growth in earnings experienced by a typical faculty member. Interpreted in this way, the average salary difference between white and female faculty members is equivalent to about 1 to 3 years of career experience, and the difference between white males and minority faculty members is equivalent to about 1 to 2 years of career experience.\(^1\)

Figures 4D, 4E, and 4F compare the Spring semester 2016 salary differences to those observed in the 2015 Report, which was based on December 2014 data. The differences for women relative to white men are smaller now, -1.2% (with rank included, submodel 4) and -3.4% (no rank, submodel 3), than those observed in December 2014, -1.8% and -4.3%, respectively.

\[^1\] Each year since hire is associated with a salary increase of approximately 1.4%.
For Asians relative to white men, both submodels now show a difference of -1.7%, quite similar to December 2014, with values ranging from -1.7% to -1.8%. For URMs, the 2016 submodels show a negative difference of -0.4% (with rank) and -0.8% (no rank). These differences were larger in December 2014, standing at -1.0 and -1.2%, respectively. The decreases in negative salary differences for women and URM are encouraging, suggesting recent personnel actions may have had a beneficial effect.
2016 Annual Update, University of California, Berkeley, Salary Equity Study
2D: Campus-level—the three regression models

So far, campus-level findings have been presented using the log-salary model. In subsection 2E below, the presentation of time-series analysis will bring out one distinct advantage of the log-salary model: trends over time can be seen without the introduction of adjustments for economic inflation or deflation. Given the consistency of Berkeley’s faculty dataset, the value of longer-trend historic analysis seems clear, as it allows us to examine observed salary differences over time and to consider them in light of administrative and historic changes.

In this subsection, results from the log-salary model are compared with those from the white-male and total-population models. In contrast to the log-salary models, which estimate percentage salary differences, these models estimate the average salary difference between groups in dollars. The implied differences are all quite similar, suggesting that the basic conclusions of this study are unaffected by choice of specific model.12

The white-male model13 shows negative salary differences of -$5,847 (submodel 3) and -$2,007 (submodel 4) for female faculty relative to white male faculty. Using the mean salary of white male faculty as a benchmark, these dollar differences represent percentage differences of -3.4% (submodel 3) and -1.2% (submodel 4)—the same differences as the log-salary models. Similarly, the total-population model (Appendix C, Table A3) shows a negative salary difference for women of -$5,655 for submodel 3 and -$2,026 for submodel 4, when comparing women to white men—very close to the differences shown by the white-male models. Again using the mean salaries of white men as a benchmark, these translate to percentage differentials of -3.3% for submodel 3 and -1.2% for submodel 4—nearly the same as the log-salary model.

Turning to the results for Asian and URM faculty, again the alternative models give similar results. For example, the total population models (Appendix C, Table A3) show estimated salary differences for Asians relative to white males of -$2,977 (submodel 3) and -$2,928 (submodel 4), corresponding to percentage differences of -1.7% for both submodels and the same as the log salaries for all faculty members. Likewise, for URM faculty these models show estimated salary differences relative to white males of -$1,655 (submodel 3) and -$743 (submodel 4), corresponding to percentage differences of -1.0% and -0.4%—close to the results shown in Figure 4C from the log salary models. The implied differences for Asian and URM faculty from the white male models (Appendix C, Table A2) are a little more variable across specifications, but overall they are fairly similar to the differences from the other two sets of models.

Of the three different regression model types, the white-male approach is substantially different from the other two. Specifically, the white-male model provides a regression based

12 Per Haignere, pp. 41-43.
13 Appendix C, Table A2.
solely on the white male population (n=791), and then actual salaries are compared to the
salaries predicted on the hypothesis that salaries for all faculty will be the same as those for
white men who have similar descriptors for the introduced variables concerning experience,
field, and rank. The differences between predicted and actual salaries for individuals—called
“residuals”—are then used to calculate mean salary differences between expected and actual
salaries for different groups. A scatter-plot can thus be constructed with predicted salaries for
individuals marked along the X-axis, actual salaries for individuals marked along the Y-axis, and
a plotted white-male regression line.

Figure 5A shows a scatter plot for submodel 2, which includes only experience-related
variables.

Given the limitations of submodel 2, which includes experience-variables only, it is not
surprising to see considerable scatter around the white-male linear regression line. The R-
-square value and adjusted R-square values for this submodel are relatively low, with just 28% of
the salary variance described.

As figure 5B shows, once field is included in the regressions (submodel 3), there is markedly less
scatter, and the percentage of variance that is described increases to 67-69%.
Figure 5B: current salary vs. salary predicted by regression
white male submodel 3 (experience and field)

Each dot above the diagonal line indicates an actual salary higher than predicted on the basis of white male salaries; the dots below the line indicate lower salaries than predicted.

R-Square = .69
Adj. R-Sq. = .67

Source: UCB Faculty Personnel Records, 2/25/2016.

*Experience; & Departments plus multiple appointment indicators.

Figure 5C: current salary vs. salary predicted by regression
white male submodel 4 (experience, field, rank)

Each dot above the diagonal line indicates an actual salary higher than predicted on the basis of white male salaries; the dots below the line indicate lower salaries than predicted.

R-Square = .75
Adj. R-Sq. = .74

Source: UCB Faculty Personnel Records, 2/25/2016.

*Experience; Field; & Current rank (assistant or associate vs. full professor); years in current rank.
Figure 5C shows the introduction of rank variables, which further reduces scatter and yields an R-square value of .75 and an adjusted R-square of .74.

Two points are worth noting here. First, we can see that submodel 3, which takes field into account, provides much better fit than submodel 2 does. Second, even with the inclusion of rank and years in rank in submodel 4, about 25% of salary variance remains undescribed. Still, the adjusted R-square values are relatively high for submodels 3 and 4, and they are at levels that provide support to the findings of this study.

2E: Time-series regression analysis

As mentioned above, the log salary model simplifies historical analysis. Figure 6, for example, shows changes over the past decade in salary differences based on Spring semester data, using submodel 4, which controls for experience, field, and rank.14

---

14 Note: A small degree of variability between the time-series regression runs reported in the January 2015 report and this current 2016 update report exist due to any of the following reasons: (1) The inclusion of departmental variables in specific regression runs, including time-series runs, depends on having N>=10 faculty in the most recent academic year; since departmental populations vary over time, the inclusion of specific field variables can vary with each iteration of this report; (2) On an annual basis we re-poll faculty with missing race-ethnicity data, and this updated data is included in all current regression runs, including time-series data runs; (3) A small number of retroactive salary actions can alter the salary values of a few individuals for past years; and (4) To be more consistent, all time-series data will forthwith depend on data from the Spring semester of the academic year. Last year, the 2014-2015 data was drawn based on December 2014 due to the time constraints of having to deliver the initial salary study to UCOP by a January 2015 deadline. To provide more consistent trend data, the release of updated salary reports have been pushed further into the Spring Semester, providing the necessary time to secure the most recent Spring salary data, and to minimize the likely number of future retroactive salary actions. This delay was particularly important this year given the large number of new TDI awards.
Year-to-year volatility for Asian and URM faculty probably reflects their relatively small numbers; the timing of just a few hires, separations, or salary increases can have considerable impact. For women, negative salary differences in earlier years generally hovered between -2.5% and -3% but have decreased since 2011. Of possible relevance is the fact that a Targeted Decoupling Initiative provided salary increases effective in 2012, 2013, 2014; and a larger 2015-16 TDI was just implemented, which may well have reduced the negative salary difference for women and URM relative to white men.

Tables B1, B2, B3, and B4 in Appendix C provide fuller information about time-series analyses that use each of the four submodels. Table B1 tracks results for submodel 1 over time. (Recall that submodel 1 uses demographic data only.) Table B1 makes clear that demography on its own has described relatively little salary variance in each of the past twelve years, with R-square values ranging from .07 to .09 (meaning that only 7-9% of variance is explained by demography alone). Table B2 tracks the results for submodel 2 over time; here experience variables are included along with demographic variables. The R-square values are greater but are not large, and they declined over time from .50 in 2004 to between .38 and .40 since 2010. Thus the capacity of demography and experience variables to describe salary variance is not substantial and has declined some over the last decade. Table B3 tracks the results for submodel 3 over time, showing the results of using demographic, experience, and field variables. With the addition of field variables, the adjusted R-square values rise considerably,
and they do not exhibit a decline over time, moving slightly up and down between .68 and .71. Table B4, whose results are plotted in Figure 6 above, shows adjusted R-square values that are higher still, consistently between .76 and .80.

One possible way to think about these patterns is that the role of market has become increasingly powerful in recent years, just as the importance of the experience-related terms seems to have declined. This shift may be related to the fact that certain departments and or fields have experienced unusually large increases in their salaries relative to other fields. Figure 7 shows rapid escalation in salaries over the last decade in five fields: business, law, economics, agricultural economics, and public policy.

Market forces seem to be at work here, as the AAUDE data displayed in Figure 3B above depict a similar grouping of high-paid fields.

Other time-series descriptive data drawn from the UCB personnel records suggest that market forces are altering the composition of salaries on our campus, given long-term stagnation in UC’s salary scales. Figure 8 looks back over the years since 1979, showing mean base salaries and decoupled increments for academic-year salaries for assistant professors who are at Step III
on the regular professorial scale.\textsuperscript{15} In aggregate, decoupled salary increments have functioned to back-fill salaries that would otherwise have declined over time in real terms due to inflation.

Similar analysis shows that market forces have pushed decoupled amounts upwards more quickly for assistant professors (step III) than for full professors (step VII) and for faculty on the Business, Engineering, and Economics scale than for faculty on the regular professorial scale. In short, major market changes are clearly affecting patterns of UCB faculty compensation.

\textsuperscript{15} These data use a Consumer Price Index deflator in order to provide constant dollar amounts in 2015 dollars.
2F: Unit-level regression analyses

In addition to carrying out studies at the campus level, we segmented the faculty to discover whether observed salary differences tend to be unit-specific or not. As much as possible, this segmentation is by decanal unit. This is in part because deans made recommendations concerning faculty salaries and advancement, and in part because we would like the results of these unit-level studies to support any administrative actions that may be appropriate. Also, although many decanal units include faculty members with diverse disciplinary training and interests, studies by decanal unit generally group together sub-units that may be affected by similar market and academic forces.

To support analytical rigor, however, we do not provide separate results for the smaller decanal units, whose ladder-faculty sizes are too small to provide meaningful results. Thus we have grouped the following decanal units together: Education, Environmental Design, Information, Journalism, Optometry, Public Health, Public Policy, and Social Welfare. We also note that in the smaller of the units that are individually discussed below, time-series fluctuations suggest that relatively little weight should be given to a single year’s snapshot. These smaller units are the College of Chemistry, the Haas School of Business, and Berkeley Law. Where the number of URM or Asian faculty within a unit is less than 10, faculty in the two categories are combined as “Minority.”

For each unit or group of units below, Appendix C contains four detailed tables: (1) log salary 2015-16, with submodels 1-4; (2) white-male 2015-16, with submodels 2-4;\(^\text{16}\) (3) log salary time-series, submodel 3, 2004-05—2015-16; and (4) log salary time-series, submodel 4, 2004-05—2015-16. Tables for total population models are not included; this model shed little additional light on the observed salary patterns. Please note that faculty with multiple appointments appear in the analysis of all units in which they have an appointment; Appendix B includes a discussion of coding for multiple appointments.

\(^\text{16}\) Submodel 1 is not possible given the construction of the white-male model.
L&S Arts and Humanities. Figure 9A below shows that in submodel 4, which includes rank, the salary difference for women is positive, at +1.9%. In submodel 3, which does not include rank, the difference is negative, at -2.9%. Tables C1c and C1d show that during the past several years, negative differences for women have decreased or differences have become positive. Salary differences for Asian and URM faculty vary considerably depending on the selected model, and time-series results are fairly volatile year to year. For example, in the five most recent years, submodel 4 shows salary differences for Asian faculty were -4.5%, +0.1%, -0.7%, -2.7%, and -2.4%. The statistical significance of these results is low, as reflected in high p-values. The variation and volatility probably arise from the fact that the numbers of Asian and URM faculty are relatively small, meaning that a few appointments, separations, promotions, or salary increases can have a relatively large impact.
**L&S Biological Sciences.** For women in the Division of Biological Sciences, Figure 9B shows negative salary differences of -4.3% and -0.8% in submodels 3 and 4. Salary differences for minority faculty are positive. The time-series studies suggest that negative differences for women may have increased somewhat over time, but given the relatively small numbers of women and minority faculty in this unit, neither positive nor negative differences are statistically significant. A sub-study of the Department of Molecular and Cell Biology that included citation rates may be relevant to the discussion of this Division; it can be found in the 2015 Report, subsection 3G.

![Figure 9B: Biological Sciences](image)

**Figure 9B: Biological Sciences**

*women vs. white men, minority vs. white men*  
*log salary submodels 1, 2, 3, 4*

**Submodels**

1. Demography only
2. Demography, experience
3. Demography, experience, field
4. Demography, experience, field, rank

Tot. N=125: White Male N=69; Female N=37; Minority Male N=14; Unknown Male=5. Asian N=18; URM N=5.

Source: UCB Faculty Personnel Records, 2/25/2016.

1. Women; Asian plus URM (African American, Hispanic, & Native American)  
2. Years since degree & hire; years since degree squared (curvilinear); degree type.  
3. Departments plus multiple appointment indicator (yes/no).  
4. Current rank (assistant or associate vs. full professor); years in current rank.
L&S Mathematical and Physical Sciences. As Figure 9C below indicates, salary differences for minority faculty in the MPS Division are positive, and in the two key submodels, differences for women are variable, ranging from -3.0% (submodel 3) to +0.0% (submodel 4). The negative difference for women is a little lower than the observed campus differences. The times-series results for submodels 3 and 4 suggest that a negative difference for women has persisted over time, but that its size has been volatile from year to year. This volatility is unsurprising given the small number of women in the Division. Adjusted R-square values are relatively low for submodel 3 (around .50 to .55 in recent years), and in only two years are the data points statistically significant at the p<.10 level. None of the differences is statistically significant for submodel 4.

Figure 9C: Mathematical & Physical Sciences
women vs. white men, minority vs. white men
log salary submodels 1, 2, 3, 4

Submodels
1 Demography only
2 Demography, experience
3 Demography, experience, field
4 Demography, experience, field, rank

Source: UCB Faculty Personnel Records, 2/25/2016.

1 Women; Asian plus URM (African American, Hispanic, Native American)
2 Years since degree & hire; years since degree squared (curvilinear); degree type.
3 Departments plus multiple appointment indicator (yes/no).
4 Current rank (assistant or associate vs. full professor); years in current rank.
L&S Social Sciences. Figure 9D shows strikingly large negative salary differences for women and minority faculty in the baseline submodels (1 and 2), and then a striking reduction in the size of those negative differences in the key submodel that introduces field (submodel 3). These findings probably reflect the fact that the Department of Economics, compared to other departments in the Division, is both less demographically diverse and more highly compensated. For the key submodels (3 and 4) that introduce field and rank variables, negative salary differences for women are -3.9% and -1.8%. Negative differences for URM and Asian tend to be more variable than those of women, from submodel to submodel. The time-series tables (C4c-d) suggest that negative salary differences for women have decreased somewhat over time; the negative differences for Asian and URM faculty show year-to-year volatility. The departments of Sociology and Psychology were both included in a sub-study introducing variables for citation rates in the 2015 Report, subsection 3G, that may be relevant to this discussion.

![Figure 9D: Social Sciences](image)

**Figure 9D: Social Sciences**  
women vs. white men, Asian vs. white men, URM vs. white men  
log salary submodels 1, 2, 3, 4

Submodels

1 Demography only

-19.4%

-13.6%

2 Demography, experience

-17.0%

-13.3%

3 Demography, experience, field

-6.6%

-3.9%

-1.2%

4 Demography, experience, field, rank

-1.8%

-2.3%

-1.0%

Source: UCB Faculty Personnel Records, 2/25/2016.

Tot. N=296: White Male N=135; Female N=112; Minority Male N=42; Unknown Male=7. Asian N=37; URM N=45.

1 Women, Asian, URM (African American, Hispanic, Native American)
2 Years since degree & hire; years since degree squared (curvilinear); degree type.
3 Departments plus multiple appointment indicator (yes/no).
4 Current rank (assistant or associate vs. full professor); years in current rank.
**College of Engineering.** Figure 9E indicates that in the College of Engineering, there is a modest positive salary difference for Asian, and URM faculty in key submodels 3 and 4; and for women faculty in submodel 4. For URM faculty, there was a negative difference of -1.1% in 2014-15 for submodel 4, though the time-series tables indicate that the differences have been positive for all other years going back to 2004-05 and that there is considerable year-to-year volatility for URM faculty. This is unsurprising, given that there are only 16 URM faculty members in the College.

**Figure 9E: Engineering**  
*women vs. white men, Asian vs. white men, URM vs. white men*  
*log salary submodels 1, 2, 3, 4*

Submodels

1. Demography only  
2. Demography, experience  
3. Demography, experience, field  
4. Demography, experience, field, rank

Tot. N=249: White Male N=143; Female N=43; Minority Male N=58; Unknown Male=5, Asian N=54; URM N=16.

Source: UCB Faculty Personnel Records, 2/25/2016.

1. Women; Asian; URM (African American, Hispanic, & Native American).  
2. Years since degree & hire; years since degree squared (curvilinear); degree type.  
3. Departments plus multiple appointment indicator (yes/no).  
4. Current rank (assistant or associate vs. full professor); years in current rank.
College of Chemistry. Figure 9F below shows that for women in the College of Chemistry, there is a relatively large negative salary difference of -11.4% in submodel 3. The introduction of rank variables in submodel 4 reduces the negative difference to -1.1%, which is slightly smaller than that for the campus as a whole. Minority faculty members have positive salary differences relative to white male faculty members, though the time-series slides indicate considerable fluctuation over the years. For women, too, there is considerable year-to-year volatility, though there appears to have been a trend toward larger negative differences in submodel 3. Considerable fluctuation is unsurprising given the fact that there are only 15 women and 16 minority faculty (some of them women) in the College.

Figure 9F: College of Chemistry
women vs. white men, minority vs. white men
log salary submodels 1, 2, 3, 4

Axis Title

Submodels
1 Demography only
2 Demography, experience
3 Demography, experience, field
4 Demography, experience field, rank


Source: UCB Faculty Personnel Records, 2/25/2016.

1 Women; Asian plus URM (African American, Hispanic, & Native American).
2 Years since degree & hire; years since degree squared (curvilinear); degree type.
3 Departments plus multiple appointment indicator (yes/no).
4 Current rank (assistant or associate vs. full professor); years in current rank.
**College of Natural Resources.** Figure 9G shows negative salary differences for women of -5.9% in submodel 3 and -5.1% in submodel 4; both differences are larger than differences found at the campus level. Negative differences for minority faculty are also larger than those found at the campus level. The time-series tables (C7c-d) show an increase in negative salary differences for women in 2006-07 that has generally persisted since then, although it dropped some this most recent year. Subfield variability within the College’s largest department may contribute to findings for this unit, although the present study has not explored that possibility.

**Figure 9G: Natural Resources**

women vs. white men, minority vs. white men
log salary submodels 1, 2, 3, 4

Submodels

1 Demography only
-18.2%
-9.0%

2 Demography, experience
-12.7%
-6.0%

3 Demography, experience, field
-8.7%
-5.9%

4 Demography, experience, field, rank
-5.1%
-4.8%

Tot. N=117: White Male N=66; Female N=36; Minority Male N=15; Unknown Male=0. Asian N=17; URM N=6.

Source: UCB Faculty Personnel Records, 2/25/2016.

1 Women; Asian plus URM (African Am., Hispanic, & Native Am.).
2 Years since degree & hire; years since degree squared (curvilinear); degree type.
3 Departments plus multiple appointment indicator (yes/no).
4 Current rank (assistant or associate vs. full professor); years in current rank.
Haas School of Business. As Figure 9H shows, negative salary differences for women are -7.7% (submodel 3) and -6.1% (submodel 4), larger than negative differences for women at the campus level. Differences for minority faculty are also negative in submodel 3, although the inclusion of rank variables produces a positive difference of +1.9%. Note that Figure 9H displays results that reflect the inclusion of information about the affiliation of each faculty member with a defined research group (accounting, finance, etc.). This is because Haas’s self-funded salary program uses national business-school data pegged to these research subfields. Without inclusion of these subfields, negative differences for women are larger. The time-series tables suggest that negative salary differences for women in comparison to white men have increased over time. A sub-study of Haas faculty looking at the impact of citation counts was included in subsection 3G of the 2015 Report.

**Figure 9H: Haas School of Business**

women vs. white men, minority vs. white men log salary submodels 1, 2, 3, 4

1 Demography only

2 Demography and experience

3 Demography, experience, field

4 Demography, experience, field, rank

1 Women; Asian plus URM (African American, Hispanic, & Native American).
2 Years since degree & hire; years since degree squared (curvilinear); degree type.
3 Haas subfields plus multiple appointment indicator (yes/no).
4 Current rank (assistant or associate vs. full professor); years in current rank.

17 The Faculty Excellence Program (FEP) provides merit-based salary increases whose size is calculated for each group based upon national salary data. The FEP program was reviewed and supported by the Senate’s Budget Committee and approved by the central administration; the funding is provided through the School’s revenue-generating programs. Faculty are eligible to benefit from the FEP only if their rank/step advancement is normal. The first version of the FEP was introduced in 2003.

18 See C8e and C8a in Appendix C.

19 These are based on log runs without subfields, C8c-d.
**Berkeley Law.** As shown in Figure 9I, negative salary differences for women are -1.2% in submodel 3 and -1.9% in submodel 4. Salary differences for minority faculty are -0.8% in submodel 3 and +1.1% in submodel 4. Time-series studies show fluctuation, which is unsurprising for a fairly small unit with relatively small subpopulations of women and minority faculty. We note that Law, like the Haas School of Business, has a self-funded salary program for eligible faculty.20

---

20 The Competitive Compensation Initiative (CCI) provides merit-based salary increases on a special scale that is pegged to national salary data for law schools. The CCI was supported by the Senate’s Budget Committee and approved by the central administration; the funding is provided through Law’s revenue-generating programs. The CCI was instituted in 2008.
Other units. As Figure 9J indicates, within this group of smaller decanal units, salary differences for women are -0.9% in submodel 3 and +0.2% in submodel 4. (We note, however, that submodel 4 in the white-male model shows a negative difference for women of -$3,577.) Salary differences for Asian and URM faculty are negative and are larger than the corresponding differences found at the campus level. Time-series studies suggest that negative differences for women have become smaller over the past decade, while negative differences for Asian and URM faculty have become somewhat larger.

Figure 9J: other units*
women vs. white men, Asian vs. white men, URM vs. white men
log salary submodels 1, 2, 3, 4

Submodels
1 Demography only
2 Demography and experience
3 Demography, experience, field
4 Demography, experience, field, rank

Tot. N=212: White Male N=100; Female N=84; Minority Male N=25; Unknown Male=3. Asian N=17; URM N=35.

Source: UCB Faculty Personnel Records, 2/25/2016.

1 Women: Asian; URM (African American, Hispanic, Native American).
2 Years since degree & hire; years since degree squared (curvilinear); degree type.
3 Departments plus multiple appointment indicator (yes/no).
4 Current rank (assistant or associate vs. full professor); years in current rank.
2G: Sub-studies of special topics—rank and retention

(Section 3G of the 2015 Report included several sub-studies concerning citation counts as well as the use of data concerning h-indices in a sub-study concerning the School of Public Health. The present report has not attempted to update those earlier sub-studies, because they were quite labor-intensive.)

Rank. To explore the effects of introducing rank variables in submodel 4, more detailed rank runs were conducted.  

Figure 10 displays some of the updated findings from this sub-study:

```
Figure 10: rank sub-study, campus level
women vs. white men
log salary submodels 3, 4a-d, 5a-b

Rank Submodels

3  (=submodel 3)
-3.4%

4a  demography, experience, field, rank (assistant only)
-3.1%

4b  demography, experience, field, rank (assistant/associate)
-2.5%

4c  demography, experience, field, rank (assistant; associate)
-2.3%

4d  (=submodel 4)
-1.2%

5a  demography, experience, field, rank (rank/step)
-1.1%

5b  demography, exp., field, rank (rank/step, years in step)
-1.0%
```

This finer-grained approach to rank and step starts with submodel 3, which includes the usual demography, experience, and field variables, but not rank. Here, where results for women are presented, we see the negative salary difference of -3.4% for submodel 3 displayed in the top bar. Submodel 4a introduces a single categorical variable for assistant professors (vs. the residual category of associate and full professors), with minimal change. Submodel 4b combines assistants and associates into a single categorical variable, which is run against the residual category of full professor. The results here are more notable, reducing negative salary differences to -2.5%. Submodel 4c includes separate categorical variables for assistants and for

---

21 The runs may be found in Appendix C, Tables E1-E6.
associates, running each against full professors; this produces a negative salary difference
similar to the one in submodel 4b. Finally, submodel 4d is identical with submodel 4 in the
campus level log salary runs, where the negative salary difference for women is -1.2%. (See
Figure 4A above.)

What submodel 4d includes that 4a, 4b, and 4c do not is a continuous variable for years in
rank. It is with the inclusion of this additional time-based variable that the negative salary
difference for women decreases to -1.2%.

Submodel 5a takes a different approach, one that has been used in older studies of faculty
salaries at Berkeley. It introduces rank and step as categorical variables, and as Figure 10
indicates, this produces very similar results to those obtained by using variables for rank and
years in rank, as has been done throughout this study. Finally, submodel 5b goes one step
further, including rank-step categorical variables and years at step. The impact is not great,
showing a negative salary difference for women of -1.0%. In submodels 5a and 5b, the negative
salary difference for minority faculty relative to white male faculty is small, -0.5% for Asian
faculty and slightly positive for URM faculty.

Tables E2-E6 in Appendix C show log salary runs for the campus for individuals in selected
rank/step bands: assistant professors, associate professors, full professors below step 6, full
professors at steps 6 to 9, and full professors above scale. In aggregate, these runs indicate
that negative salary differences for women at assistant rank and professors Above Scale are
roughly similar to those for all women; that differences for women associate professors and full
professors steps 6 to 9 are somewhat less than those for all women; and that women full
professors steps 1 to 5 have somewhat larger negative differences than those seen for all
women. Because the number of Asian and URM faculty in each of these rank-step bands is
small, the observed salary differences are volatile, moving from negative to positive and back
again in no easily discernable pattern.

Retention. There can be no question that salary increases provided by Berkeley in response to
outside offers create salary disparities between equally accomplished faculty members within
the same discipline. This does not, however, settle the question whether these disparities
disproportionately affect women or members of minority groups.

The campus records that are currently available permit only a fairly crude approach to
answering this important question. Figure 11 shows the results of introducing a single
categorical variable (yes/no) indicating whether a particular current faculty member has ever,

---

22 This is suggested by Haignere in Paychecks.
23 Tables for the retention sub-studies may be found in Appendix C, Tables F1-F2.
since 1998, been a “retention case.” This variable is introduced in turn after the usual demography, experience, and field variables; rank variables are not introduced here.

Introducing this retention variable increases the negative salary difference for women from -3.4% to -3.9%; similarly, differences for Asian faculty increase from -1.7% to -2.0% and for URM faculty from -0.8% to -1.3%. While these changes are not dramatic, their direction suggests that this area of inquiry calls for additional investigation.

With additional data-collection now under way, future updates should be able to provide more fine-grained analysis of retention effects.

---

24 The designation draws upon records kept by Vice Provost for the Faculty (formerly Vice Provost for Academic Affairs & Faculty Welfare).
3. Recommendations

Below are short descriptions of the recommendations made in section 5 of the 2015 Report, followed by information about steps taken.

3A: Additional studies and data-collection

Regular updates of this study.

2016: This first update of the salary equity study provides an opportunity to monitor changes that have occurred in the first year after the report of the initial findings to the campus. This update is being made available to the faculty, chairs, and deans in an effort to foster continuing awareness of the issues and to assess the effectiveness of interventions.

Retention data.

2016: The Academic Personnel Office has begun to collect data on the amount of each outside offer, the amount of Berkeley’s response that is attributable to retention (rather than to a simultaneous merit increase), and (where possible) the standing of the program or institution making the offer. These data will be analyzed as soon as there are enough cases (probably in the 2017 updated Report).

In addition, Berkeley is participating in a pilot study that aims to improve our understanding of what is effective in retaining faculty who are considering outside offers and what reasons lead others to decide to leave.

Advancement studies. The 2015 Report recommended that additional studies of advancement rates and of “headroom” issues should be conducted to determine whether Berkeley’s way of using the step system enables accomplished faculty in all disciplines to advance at similar rates. Particular attention should be given to understanding rates of advancement in the “book-based” disciplines.

2016: We have not yet carried out advancement studies but hope to in the near future.

Leave and “clock” data.

2016: The Academic Personnel Office is now collecting data about time off the tenure clock for new parents. Going forward, this will allow us to analyze the data by gender and ethnicity, and to determine whether current “family-responsive” policies are equally helpful to all eligible faculty.
Faculty climate survey.

2016: The 2015 Report recommended that an updated survey be conducted within the next one to two years, with the survey questions informed by the salary report, the 2014 UC climate survey, and other pertinent studies. We have not yet conducted a new faculty climate survey but hope to begin one in the near future.

3B: Salary enhancement programs

Immediate reviews for some faculty.

2016: The office of the Associate Vice Provost for the Faculty identified individuals who were negative salary “outliers.” The AVP did an immediate review of the records of those faculty members to determine whether their contributions in research, teaching, and service were assessed fairly in accordance with Berkeley’s policies. It was determined that none of these cases required immediate remedial action as the case materials consistently provided plausible reasons why the salary was a negative outlier.

Revision to the Career Equity Review (CER) guidelines.

2016: The previous guidelines stated: For faculty whose salaries are decoupled, a CER resulting in step advancement may not cause the salary to rise. Instead, the decoupled portion of his/her salary will decrease.

Effective July 1, 2015, the guidelines were modified to read: For faculty members whose salaries are decoupled, a CER resulting in step advancement may result in a salary increase under certain circumstances: the decoupled increment will be preserved and not reduced when the decoupling had been provided before the introduction of inequity into the faculty member’s advancement history.

The Associate Vice Provost for the Faculty reviewed prior CER cases and found none calling for remedial action under the revised guidelines.

A new Targeted Decoupling Initiative.

2016: The design of the 2015 TDI program was informed in part by the results of the 2015 Report. In addition, broad input resulted in guidelines that shifted focus from preemptive retention or market-related factors. Instead, the focus was on internal salary equity, especially for faculty who “work effectively to build and sustain Berkeley as a strong institution. For example, Berkeley is strong when it supports academic
excellence through faculty leadership; promotes a diverse range of scholarly inquiries; and creates equal opportunities for faculty colleagues and students.”

A total of nearly $3M was provided for TDI awards, and 387 faculty received salary increases of $4,000, $8,000, $12,000, or $16,000. These recipients were approximately 28% of the eligible faculty. Those who were women or members of minority groups (Asian and URM) received 54% of the total funds; this is a population that comprises 46% of the total faculty population.

3C: Additional programs

2016: The launch of the online Berkeley Manual of Academic Personnel provides greater transparency for faculty concerning issues of advancement and salary. It also offers encouragement to faculty, chairs, and deans to describe and assess informal teaching, mentoring, and service.

The series of seminars for department chairs now includes a session with the Vice Chancellor for Equity and Inclusion about the ways in which departmental cultures can become more inclusive and supportive for all faculty members and students.

To help sustain continuing campus awareness of the work we must all do collectively, we repeat here the concluding paragraphs of the 2015 Report:

We recommend sustaining and strengthening practices and programs that help to provide equal access for all faculty members to the requisites of academic success and to ensure that all faculty members are advanced appropriately. In implementing these recommendations, the particular circumstances of women faculty who are members of ethnic minority groups should be considered with care.

(a) It is vital to sustain and enhance Berkeley’s family-friendly policies, child-care initiatives, and back-up care program. Professor Emerita Mary Ann Mason, Dr. Marc Goulden (director of faculty data initiatives at Berkeley), and their co-author Nicholas Wolfinger have identified “family-friendly” policies concerning dependent care, dual careers, and childbirth and parenting as among the measures that are especially important in supporting women faculty in academia.25 Berkeley is among the institutions that offer new parents time off the “tenure clock” and modification of duties as entitlements, along with paid childbearing leave for birth mothers. Berkeley also now offers back-up care

services to help faculty members care for family members, and the campus’s Early Childhood Education programs have some slots for infant and preschool care and education for the children of faculty members.

These measures support decisions about life/work balance; at the same time, if they are used differently by men and women, then they may result in some differences in rates of advancement during family formation. Thus these options may need to be considered further in light of newly gathered data about how they are used.

(b) Each year, workshops are offered for assistant professors and associate professors to help them understand relevant academic review processes, general campus expectations for promotion, and ways to prepare effective presentations of their accomplishments. While these should certainly be continued, they must be supplemented through close and effective mentoring26 at the department level.

Berkeley’s Vice Chancellor for Equity and Inclusion has been piloting a program aimed at developing such mentoring efforts. All faculty members can benefit from effective mentoring, and studies suggest that the needs of women and members of ethnic minority groups, who may have fewer points of entry into valuable networks of information and support, should be considered with care.

Particular attention should be given to the question how to support faculty members who are working toward the completion of a book project. The campus has supported the development of writing groups, which offer peer support, and the campus is also funding participation in an on-line peer support program for those who choose that option. The effectiveness of those measures should be carefully tracked, and additional measures should be developed in consultation with book-writing faculty members, along with cognizant deans and chairs.

(c) Berkeley has long offered chairs and deans workshops concerning the preparation of academic personnel cases. Information and recommendations from this study should be presented to the participants at these workshops, and all participants should be asked to read this report.

---

26 Ying, C., Ross, N., Kulashekar, M., Maisel, M., Webb, E., & Crosby, F. J. (2011). *A bibliography of the empirically-driven literature on mentoring. Technical report #7.* This can be obtained from Crosby at fjcroby@ucsc.edu.
(d) In the fall of 2013, Berkeley began offering new department chairs a series of “seminars” to help them provide effective leadership. Chairs can have positive and lasting effects on their departments through fostering inclusive climates for faculty, students, and staff, by ensuring that faculty members receive appropriate mentoring, and by helping departments to develop and follow explicit policies about internal governance. Future new-chair seminar series should include background reading and practical advice for chairs so that they can succeed in this broad arena.

(e) As additional data shed further light on patterns of advancement and promotion, candidates, chairs, and deans should focus carefully on ensuring that all faculty members are reviewed in a timely fashion and are recommended for appropriate merit increases. The cumulative salary effects over time of several decelerations can be significant. All faculty members should be encouraged and supported in coming forward for timely review; in light of some social-science findings, this may be especially beneficial to women and members of ethnic minority groups.

(f) In assigning service, chairs should check to make sure that assignments are distributed appropriately and equitably. Chairs should bear in mind that faculty members are expected to make greater service contributions as they advance through the rank/step system. Assistant professors should have opportunities to gain service experience, but they should also be able to dedicate most of their time to developing their research and teaching records. Full professors are expected to contribute more service than associate professors, and expectations are highest for Above Scale faculty. Service assignments for faculty members who do large amounts of valuable but unassigned mentoring should be calibrated with particular care.

(g) Transparency can help to assure all concerned that the burdens of teaching and service are fairly distributed. Written policies concerning teaching load should be created if they do not already exist, and they should be discussed by the entire faculty. The development and use of appropriate metrics may help to ensure clarity and fairness. Chairs are responsible for the department’s adherence to such policies. Chairs should provide all faculty members with information about course and service assignments, and they should also be advised to consult regularly with the departmental equity advisor about course and service assignments.

(h) This report should provide a springboard for debate and discussion in many arenas, including departmental meetings, Senate committees, and administrative policy-making. The Vice Provost for the Faculty, the Associate
Vice Provost for the Faculty, and the Director of Data Initiatives should make themselves available in a variety of forums across the campus to discuss the study and the report. The fruits of campus dialogue should be harvested in as many ways as possible.